Search results for "mobility load balancing"

showing 1 items of 1 documents

Assessment of Deep Learning Methodology for Self-Organizing 5G Networks

2019

In this paper, we present an auto-encoder-based machine learning framework for self organizing networks (SON). Traditional machine learning approaches, for example, K Nearest Neighbor, lack the ability to be precisely predictive. Therefore, they can not be extended for sequential data in the true sense because they require a batch of data to be trained on. In this work, we explore artificial neural network-based approaches like the autoencoders (AE) and propose a framework. The proposed framework provides an advantage over traditional machine learning approaches in terms of accuracy and the capability to be extended with other methods. The paper provides an assessment of the application of …

Computer scienceintrusion detection5G-tekniikka02 engineering and technologyIntrusion detection systemself-organizing networks (SON)Machine learningcomputer.software_genrelcsh:Technologyk-nearest neighbors algorithmself-organizing networkslcsh:Chemistryautoencoder (AE)deep learning (DL)mobility load balancing0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer ProcessesautoencoderArtificial neural networkbusiness.industrylcsh:Tmobility load balancing (MLB)Process Chemistry and TechnologyDeep learningGeneral Engineeringdeep learning020206 networking & telecommunicationsSelf-organizing networkLoad balancing (computing)021001 nanoscience & nanotechnologyAutoencoderlcsh:QC1-999Computer Science Applicationscell outage detectionlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Cellular networkArtificial intelligence0210 nano-technologybusinesslcsh:Engineering (General). Civil engineering (General)computerlcsh:Physics5G
researchProduct